2,683 research outputs found

    SuperB: a linear high-luminosity B Factory

    Full text link
    This paper is based on the outcome of the activity that has taken place during the recent workshop on "SuperB in Italy" held in Frascati on November 11-12, 2005. The workshop was opened by a theoretical introduction of Marco Ciuchini and was structured in two working groups. One focused on the machine and the other on the detector and experimental issues. The present status on CP is mainly based on the results achieved by BaBar and Belle. Estabilishment of the indirect CP violation in B sector in 2001 and of the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e+e- asymmetric B Factories operating at the center of mass energy corresponding to the mass of the Y(4s). With the two B Factories taking data, the Unitarity Triangle is now beginning to be overconstrained by improving the measurements of the sides and now also of the angles alpha, and gamma. We are also in presence of the very intriguing results about the measurements of sin(2 beta) in the time dependent analysis of decay channels via penguin loops, where b --> s sbar s and b --> s dbar d. Tau physics, in particular LFV search, as well as charm and ISR physics are important parts of the scientific program of a SuperB Factory. The physics case together with possible scenarios for the high luminosity SuperB Factory based on the concepts of the Linear Collider and the related experimental issues are discussed.Comment: 22 pages, 22 figures, INFN Roadmap Repor

    Quasi-stationary States of Two-Dimensional Electron Plasma Trapped in Magnetic Field

    Full text link
    We have performed numerical simulations on a pure electron plasma system under a strong magnetic field, in order to examine quasi-stationary states that the system eventually evolves into. We use ring states as the initial states, changing the width, and find that the system evolves into a vortex crystal state from a thinner-ring state while a state with a single-peaked density distribution is obtained from a thicker-ring initial state. For those quasi-stationary states, density distribution and macroscopic observables are defined on the basis of a coarse-grained density field. We compare our results with experiments and some statistical theories, which include the Gibbs-Boltzmann statistics, Tsallis statistics, the fluid entropy theory, and the minimum enstrophy state. From some of those initial states, we obtain the quasi-stationary states which are close to the minimum enstrophy state, but we also find that the quasi-stationary states depend upon initial states, even if the initial states have the same energy and angular momentum, which means the ergodicity does not hold.Comment: 9 pages, 7 figure

    Many pion decays of rho(770) and omega(782) mesons in chiral theory

    Full text link
    The decays rho(770) to 4 pi and omega(782) to 5pi are considered in detail in the approach based on the Weinberg Lagrangian obtained upon the nonlinear realization of chiral symmetry, added with the term induced by the anomalous Lagrangian of Wess and Zumino. The partial widths and excitation curves of the decays rho^0 to 2 pi^+ 2 pi^-, pi^+ pi^- 2 pi^0, rho^{+-} to 2 pi^{+-} pi^{-+} pi^0, rho^(+-} to pi^(+-} 3 pi^0 are evaluated for e^+e^- annihilation, photoproduction and tau lepton decays. The results of calculations are compared with the recent CMD-2 data on the decay rho^0 to 2 pi^+ 2 pi^- observed in e^+e^- annihilation. The omega to 5 pi decay widths and excitation curves in e^+e^- annihilation are obtained. The angular distributions for various combinations of the final pions in the decays rho to 4 pi and omega to 5 pi are written. The perspectives of the experimental study of the above decays in e^+e^- annihilation, tau lepton decays and photoproduction are discussed.Comment: Revtex, 32 pages including 11 ps figures. Replaced to fit the version published in Phys. Rev. D. Material rearranged, clarifying remarks and references added, typos fixe

    Statistical Properties of Turbulence: An Overview

    Get PDF
    We present an introductory overview of several challenging problems in the statistical characterisation of turbulence. We provide examples from fluid turbulence in three and two dimensions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer additives.Comment: 34 pages, 31 figure

    A Search for Jet Handedness in Hadronic Z0Z^0 Decays

    Get PDF
    We have searched for signatures of polarization in hadronic jets from Z0qqˉZ^0 \to q \bar{q} decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure

    Back-reaction and effective acceleration in generic LTB dust models

    Full text link
    We provide a thorough examination of the conditions for the existence of back-reaction and an "effective" acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains, we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the boundary of every domain. Effective deceleration necessarily occurs in all domains in: (a) the asymptotic radial range of models converging to a FLRW background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial range of models converging to a FLRW background, (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v) domains near and/or intersecting a non-simultaneous big bang. All these scenarios occur in hyperbolic models with negative averaged and local spatial curvature, though scenarios (iv) and (v) are also possible in low density regions of a class of elliptic models in which local spatial curvature is negative but its average is positive. Rough numerical estimates between -0.003 and -0.5 were found for the effective deceleration parameter. While the existence of accelerating domains cannot be ruled out in models converging to an Einstein de Sitter background and in domains undergoing gravitational collapse, the conditions for this are very restrictive. The results obtained may provide important theoretical clues on the effects of back-reaction and averaging in more general non-spherical models.Comment: Final version accepted for publication in Classical and Quantum Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure

    Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom-Gage Spectrum

    Get PDF
    Two-dimensional turbulence appears to be a more formidable problem than three-dimensional turbulence despite the numerical advantage of working with one less dimension. In the present paper we review recent numerical investigations of the phenomenology of two-dimensional turbulence as well as recent theoretical breakthroughs by various leading researchers. We also review efforts to reconcile the observed energy spectrum of the atmosphere (the spectrum) with the predictions of two-dimensional turbulence and quasi-geostrophic turbulence.Comment: Invited review; accepted by J. Low Temp. Phys.; Proceedings for Warwick Turbulence Symposium Workshop on Universal features in turbulence: from quantum to cosmological scales, 200

    Slow-roll, acceleration, the Big Rip and WKB approximation in NLS-type formulation of scalar field cosmology

    Full text link
    Aspects of non-linear Schr\"{o}dinger-type (NLS) formulation of scalar (phantom) field cosmology on slow-roll, acceleration, WKB approximation and Big Rip singularity are presented. Slow-roll parameters for the curvature and barotropic density terms are introduced. We reexpress all slow-roll parameters, slow-roll conditions and acceleration condition in NLS form. WKB approximation in the NLS formulation is also discussed when simplifying to linear case. Most of the Schr\"{o}dinger potentials in NLS formulation are very slowly-varying, hence WKB approximation is valid in the ranges. In the NLS form of Big Rip singularity, two quantities are infinity in stead of three. We also found that approaching the Big Rip, weff1+2/3qw_{\rm eff}\to -1 + {2}/{3q}, (q<0)(q<0) which is the same as effective phantom equation of state in the flat case.Comment: [7 pages, no figure, more reference added, accepted by JCAP
    corecore